YOMEDIA
NONE

Gọi \(S\) là tập hợp các giá trị của tham số \(m\) để phương trình \({9^x} - 2m{.3^x} + {m^2} - 8m = 0\) có 2 nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 2\). Hãy tính tổng các phần tử của \(S\).

A. \(\dfrac{9}{2}\)        

B. \(9\)                     

C. \(1\)                    

D. \(8\)  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • TXĐ :   \(D = \mathbb{R}\)

    \({9^x} - 2m{.3^x} + {m^2} - 8m = 0\)    (1)

    Đặt \(t = {3^x}\) suy ra \(t > 0\), phương trình đã cho trở thành : \({t^2} - 2mt + {m^2} - 8m = 0\)      (2)

    Phương trình \(\left( 1 \right)\) có 2 nghiệm phân biệt khi và chỉ khi phương trình \(\left( 2 \right)\) có 2 nghiệm phân biệt đều dương

    Suy ra \(\left\{ \begin{array}{l}\Delta ' > 0\\{t_1} + {t_2} > 0\\{t_1}.{t_2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {m^2} + 8m > 0\\2m > 0\\{m^2} - 8m > 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m > 8\\m < 0\end{array} \right.\end{array} \right. \Leftrightarrow m > 8\)     (*)

    Mặt khác theo giả thiết có \({x_1} + {x_2} = 2\) nên ta có :

    \(\begin{array}{l}{t_1}.{t_2} = {m^2} - 8m\\ \Leftrightarrow {3^{{x_1}}}{.3^{{x_2}}} = {m^2} - 8m\\ \Leftrightarrow {3^{{x_1} + {x_2}}} = {m^2} - 8m\\ \Leftrightarrow {m^2} - 8m - 9 = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 9\\m =  - 1\end{array} \right.\end{array}\) 

    Từ điều kiện (*) suy ra \(m = 9\)

    Vậy tổng tất cả các phần tử của tập \(S\) là 9

    Chọn B

      bởi Thụy Mây 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON