YOMEDIA
NONE

Đường chéo của một hình hộp chữ nhật bằng d, góc giữa đường chéo và mặt đáy là \(\alpha \), góc nhọn giữa hai đường chéo của đáy bằng \(\beta \). Tính thể tích của hình hộp đó bằng:

\(\eqalign{  & (A)\;{1 \over 2}{d^3}{\cos ^2}\alpha \sin \alpha \sin \beta ;  \cr  & (B)\;{1 \over 3}{d^3}{\cos ^2}\alpha \sin \alpha \sin \beta ;  \cr  & (C)\;{d^3}{\sin ^2}\alpha \cos \alpha \sin \beta ;  \cr  & (D)\;{1 \over 2}{d^3}{\sin ^2}\alpha \cos \alpha \sin \beta . \cr} \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi O là tâm đáy \(ABCD\), giả sử \(\widehat {AOB}\) nhọn thì \(\widehat {AOB} = \beta \).

    Ta có: \(A'C = d,\widehat {A'CA} = \alpha \)

    Tam giác A’AC vuông tại A nên \(A'A = A'C\sin \alpha  = d\sin \alpha \)

    \(AC = A'C\cos \alpha  = d\cos \alpha \)

    \( \Rightarrow AO = BO = CO = DO\) \( = \frac{1}{2}AC = \frac{{d\cos \alpha }}{2}\)

    \(\begin{array}{l}{S_{ABCD}} = 4{S_{AOB}}\\ = 4.\frac{1}{2}AO.BO.\sin \widehat {AOB}\\ = 2A{O^2}\sin \widehat {AOB}\\ = 2.{\left( {\frac{{d\cos \alpha }}{2}} \right)^2}\sin \beta \\ = \frac{{{d^2}{{\cos }^2}\alpha \sin \beta }}{2}\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA'\\ = \frac{{{d^2}{{\cos }^2}\alpha \sin \beta }}{2}.d\sin \alpha \\ = \frac{1}{2}{d^3}{\cos ^2}\alpha \sin \alpha \sin \beta \end{array}\)

      bởi Tieu Giao 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON