YOMEDIA
NONE

Có tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD. Diện tích xung quanh của \(\left( T \right)\) bằng:

A. \(\dfrac{{16\sqrt 2 \pi }}{3}.\)              

B. \(8\sqrt 2 \pi .\)           

C. \(\dfrac{{16\sqrt 3 \pi }}{3}.\)              

D. \(8\sqrt 3 \pi .\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tam giác BCD là tam giác đều cạnh 4\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{S_{BCD}} = 4\sqrt 3 }\\{p = 12}\end{array}} \right.\)

     Áp dụng cồn thức tính bán kính đường tròn nội tiếp ta có:\(R = \dfrac{{2S}}{p} = \dfrac{{2\sqrt 3 }}{3}\)

    Gọi O là tâm của tam giác đều BCD

    \( \Rightarrow AO \bot \left( {BCD} \right) \Rightarrow \Delta ABO\) vuông tại O có \(BO = \dfrac{{4\sqrt 3 }}{3};AB = 4 \Rightarrow AO = h = \dfrac{{4\sqrt 6 }}{3}\)

    Khi đó diện tích xung quanh hình trụ có \(h = \dfrac{{4\sqrt 6 }}{3};R = \dfrac{{2\sqrt 3 }}{3}\) là \(S = 2\pi Rh = \dfrac{{16\sqrt 2 \pi }}{3}\)

    Chọn A.

      bởi Anh Tuyet 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON