YOMEDIA
NONE

Chứng minh tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng \({a \over 2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ABCD là tứ diện đều ⇒ tam giác ABC đều ⇒ AB = BC = CA = a

    I, E, F lần lượt là trung điểm của các cạnh AC, AB, BC nên ta có IE, IF, EF là các đường trung bình của tam giác ABC

    \(\eqalign{
    & \Rightarrow IE = {1 \over 2}BC = {1 \over 2}a \cr
    & {\rm{IF = }}{1 \over 2}AB = {1 \over 2}a \cr
    & {\rm{EF = }}{1 \over 2}AC = {1 \over 2}a \cr} \)

    Nên tam giác IEF là tam giác đều cạnh bằng \({a \over 2}\)

    Chứng minh tương tự ta có: IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng \({a \over 2}\)

      bởi Huong Giang 05/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON