YOMEDIA
NONE

Chứng minh rằng hình chóp có tất cả các cạnh bên bằng nhau nội tiếp được trong một mặt cầu.

Chứng minh rằng hình chóp có tất cả các cạnh bên bằng nhau nội tiếp được trong một mặt cầu. 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử ta có hình chóp \(S.ABCD\), có các cạnh bên \(SA = SB = SC = SD = ...\)

    Kẻ  \(SH \bot (ABCD)\), ta chứng minh được \(△SHA = △SHB = △SHC = △SHD = △...\) (cạnh huyền - cạnh góc vuông)

    Suy ra \(HA = HB = HC = HD = ...\) \( \Rightarrow \) H là tâm đường tròn ngoại tiếp đa giác đáy ABCD...

    Trong tam giác \(SAH\) chẳng hạn, ta kẻ đường trung trực của cạnh \(SA\), đường này cắt \(SH\) ở điểm \(I \Rightarrow IA = IS\).

    Do đó: \(IS = IA = IB = IC = ID = ...\) hay điểm \(I\) cách đều các đỉnh của hình chóp và do đó \(I\) là tâm mặt cầu đi qua các đỉnh của hình chóp.

      bởi lê Phương 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON