YOMEDIA
NONE

Chứng minh nếu khối đa diện có các mặt là tam giác và mỗi đỉnh là đỉnh chung của ba cạnh thì đó là khối tứ diện.

Chứng minh nếu khối đa diện có các mặt là tam giác và mỗi đỉnh là đỉnh chung của ba cạnh thì đó là khối tứ diện. 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  •  

    Gọi \(A\) là một đỉnh của khối tứ diện. Theo giả thiết đỉnh \(A\) là đỉnh chung của \(3\) cạnh, ta gọi \(3\) cạnh đó là \(AB, AC, AD\). Cạnh \(AB\) phải là cạnh chung của hai mặt tam giác, đó là hai mặt \(ABC\) và \(ABD\) (Vì qua đỉnh \(A\) chỉ có \(3\) cạnh). Tương tự, ta có các mặt tam giác \(ACD\) và \(BCD\). Vậy khối đa diện đó chính là khối tứ diện \(ABCD\).

      bởi hà trang 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON