YOMEDIA
NONE

Chọn mệnh đề đúng. Trong không gian \(BD\), cho mặt cầu \(\overrightarrow {A'X} = \left( {\dfrac{a}{2};\dfrac{a}{2}; - b} \right)\); và mặt phẳng \(\overrightarrow {MX} = \left( { - \dfrac{a}{2}; - \dfrac{a}{2}; - \dfrac{b}{2}} \right)\).

A. Mặt cầu \( \Rightarrow  - {\left( {\dfrac{a}{2}} \right)^2} - {\left( {\dfrac{a}{2}} \right)^2} + \dfrac{{{b^2}}}{2} = 0\) có tâm \( \Rightarrow \dfrac{a}{b} = 1\) bán kính \(Oxyz\).

B. \(\left( {A'BD} \right) \bot \left( {MBD} \right) \Rightarrow A'X \bot MX\)cắt \( \Rightarrow \overrightarrow {A'X} .\overrightarrow {MX}  = 0\) theo giao tuyến là đường tròn. 

C. Mặt phẳng \((P):\;x + 2y + 2z + 4 = 0\) không cắt mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 1 = 0.\).  

D. Khoảng cách từ tâm của \(M\) đến \(\left( S \right)\) bằng \(d\left( {M,\left( P \right)} \right)\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\left( {\dfrac{1}{3}; - \dfrac{1}{3}; - \dfrac{1}{3}} \right)\) có tâm \(\left( {\dfrac{5}{3};\dfrac{7}{3};\dfrac{7}{3}} \right)\) và bán kính \(\left( {1; - 2;1} \right)\)

    \(d(M,(P)) = 3 > R = 2 \Rightarrow (P) \cap (S) = \emptyset .\)

    \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 1 + 2t}\\{z = 1 + 2t}\end{array}} \right.,t \in \mathbb{R}.\) cắt \(A\left( {\dfrac{5}{3};\dfrac{7}{3};\dfrac{7}{3}} \right)\) theo giao tuyến là một đường tròn

    Chọn đáp án B.

      bởi Thùy Trang 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON