YOMEDIA
NONE

Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\).

Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\). 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Theo giả thiết, \(AS,\,AB,\,AC\) đôi một vuông góc nên ta có:

    \(AB \bot AC \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.2a.3a = 3{a^2}\)

    \(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\end{array} \right. \Rightarrow SA \bot \left( {ABC} \right)\)

    Do đó,  thể tích của khối chóp \(S.ABC\) là:

                   \({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}} = \dfrac{1}{3}.a.3{a^2} = {a^3}\)

    \(M,\,\,N\) lần lượt là trung điểm của \(SB,\,\,\,SC\) nên:

        \(\dfrac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SM}}{{SB}}.\dfrac{{SN}}{{SC}} = 1.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}\)

    Suy ra thể tích của khối chóp  \(S.AMN\) là:   \({V_{S.AMN}} = \dfrac{1}{4}{V_{S.ABC}} = \dfrac{{{a^3}}}{4}\)

      bởi Tram Anh 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON