YOMEDIA
NONE

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\sqrt 3 \), \(BC = 2a\), đường thẳng \(AC'\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \(30^\circ \). Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng

A. \(6\pi {a^2}\).

B. \(3\pi {a^2}\).

C. \(4\pi {a^2}\).

D. \(24\pi {a^2}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Trong mặt phẳng \(\left( {ABC} \right)\) kẻ \(AH \bot BC\left( {H \in BC} \right)\).

    Lại có \(AH \bot BB'\) (do \(BB \bot \left( {ABC} \right)\) suy ra \(AH \bot \left( {BCC'B'} \right)\).

    Suy ra \(\widehat {\left( {AC',\left( {BCC'B'} \right)} \right)} = \widehat {AC'H} = {30^0}\).

    Ta có: \(AC = \sqrt {B{C^2} - A{B^2}}  = a,AH = \dfrac{{AB.AC}}{{BC}} = \dfrac{{a\sqrt 3 }}{2}\)

    \(AC' = \dfrac{{AH}}{{\sin \widehat {AC'H}}} = a\sqrt 3 \) \( \Rightarrow CC' = \sqrt {AC{'^2} - A{C^2}}  = a\sqrt 2 \).

    Gọi \(R\) là bán kính mặt cầu ngoại tiếp lăng trụ, khi đó \(R = \sqrt {{r^2} + \dfrac{{{h^2}}}{4}} \) với \(r = \dfrac{{BC}}{2} = a\) là bán kính đường tròn ngoại tiếp tam giác vuông \(ABC\) và \(h = CC' = a\sqrt 2 \)

    Do đó \(R = \sqrt {{a^2} + \dfrac{{{a^2}}}{2}}  = \dfrac{{a\sqrt 6 }}{2} \Rightarrow S = 4\pi {R^2} = 4\pi .\dfrac{{6{a^2}}}{4} = 6\pi {a^2}\).

    Chọn A.

      bởi Lê Tấn Vũ 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON