YOMEDIA
NONE

Cho hình chữ nhật \(ABCD\) có \(AB = 2,\,\,AD = 2\sqrt 3 \) và nằm trong mặt phẳng \(\left( P \right)\). Quay \(\left( P \right)\) một vòng quanh đường thẳng \(BD\). Tính thể tích khối tròn xoay được tạo thành

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\Delta BCD\) vuông tại C có:

    \(BD = \sqrt {{2^2} + {{\left( {2\sqrt 3 } \right)}^2}}  = 4\); \(CI = \dfrac{{BC.CD}}{{BD}} = \dfrac{{2\sqrt 3 .2}}{4} = \sqrt 3 \) ; \(IB = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}  = 3,\,\) \(ID = 1\).

     \( \Rightarrow \,IO = OD - ID = 2 - 1 = 1\); \(\dfrac{{OM}}{{CD}} = \dfrac{{BO}}{{BC}} \Leftrightarrow \dfrac{{OM}}{2} = \dfrac{2}{{2\sqrt 3 }} \Rightarrow OM = \dfrac{2}{{\sqrt 3 }}\)

    Thể tích khối nón có đỉnh B và đáy là hình tròn tâm I bán kính IC bằng thể tích khối nón có đỉnh D và đáy là hình tròn tâm J bán kính JA bằng:

    \({V_1} = \dfrac{1}{3}.\pi .I{C^2}.IB = \dfrac{1}{3}.\pi .3.3 = 3\pi \)

    Thể tích khối nón cụt có hai đáy là hình tròn tâm I bán kính IC, hình tròn tâm O bán kính OM bằng thể tích khối nón cụt có hai đáy là hình tròn tâm J bán kính JA, hình tròn tâm O bán kính OM bằng:

    \({V_2} = \dfrac{{\pi .OI}}{3}\left( {I{C^2} + O{M^2} + IC.OM} \right) = \dfrac{{\pi .1}}{3}\left( {3 + \dfrac{4}{3} + \sqrt 3 .\dfrac{2}{{\sqrt 3 }}} \right) = \dfrac{{19\pi }}{3}\)

    Thể tích cần tìm là: \(V = 2\left( {{V_1} + {V_2}} \right) = 2.\left( {3\pi  + \dfrac{{19\pi }}{3}} \right) = \dfrac{{56\pi }}{3}\).

      bởi Nguyễn Thanh Thảo 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON