YOMEDIA
NONE

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và khoảng cách từ trọng tâm tam giác \(ABC\) đến mặt bên \(\left( {SAB} \right)\) bằng \(\dfrac{a}{4}\). Tính thể tích của hình chóp bằng:

A. \(\dfrac{{\sqrt 3 }}{{24}}{a^3}\)               

B. \(\dfrac{{\sqrt 3 }}{{16}}{a^3}\)   

C. \(\dfrac{{\sqrt 3 }}{{12}}{a^3}\)             

D. \(\dfrac{{\sqrt 2 }}{{12}}{a^3}\)  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(N\) là trung điểm của \(AB\), \(O\) là trọng tâm tam giác \(ABC\), \(P\) là hình chiếu của \(O\) lên \(AN\).

    Dễ thấy \(SO \bot \left( {ABC} \right) \Rightarrow SO \bot AB\), mà \(AB \bot CN\) nên \(AB \bot \left( {SNC} \right) \Rightarrow AB \bot OP\).

    Lại có \(OP \bot SN\) nên \(OP \bot \left( {SAB} \right)\) hay \(d\left( {O,\left( {SAB} \right)} \right) = OP = \dfrac{a}{4}\).

    Ta có: \(CN = \dfrac{{a\sqrt 3 }}{2}\) \( \Rightarrow ON = \dfrac{1}{3}CN = \dfrac{{a\sqrt 3 }}{6}\).

    Tam giác \(SON\) vuông tại \(O\) có \(\dfrac{1}{{O{P^2}}} = \dfrac{1}{{O{N^2}}} + \dfrac{1}{{S{O^2}}}\) \( \Rightarrow \dfrac{{16}}{{{a^2}}} = \dfrac{{36}}{{3{a^2}}} + \dfrac{1}{{S{O^2}}} \Rightarrow SO = \dfrac{a}{2}\).

    Diện tích tam giác \(ABC\) là \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

    Thể tích khôi chóp \({V_{S.ABC}} = \dfrac{1}{3}SO.{S_{ABC}}\) \( = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\).

    Chọn A.

      bởi thanh hằng 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON