YOMEDIA
NONE

Cho hàm số \(y = {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2}\) có đồ thị \(\left( C \right)\) và đường thẳng \(d:y = 4{\rm{x}} + 8\). Đường thẳng \({\rm{d}}\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt có hoành độ \({{\rm{x}}_1},{x_2},{x_3}\). Giá trị lớn nhất của biểu thức \(P = x_1^3 + x_2^3 + x_3^3\).

A. \(\max P = 16\sqrt 2  - 8\)

B. \(\max P =  - 8\)

C. \(\max P =  - 16\sqrt 2  - 8\)

D. \(\max P = 8\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Hoành độ giao điểm của đồ thị hàm số \(y = {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2}\) và đường thẳng \(y = 4x + 8\)là nghiệm của phương trình

    \(\begin{array}{l}{x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2} = 4x + 8\\ \Leftrightarrow {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m - 2} \right)x + 4{m^2} - 8 = 0\end{array}\)

    \[ \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\{x^2} - 2mx + 2{m^2} - 4 = 0\left( 1 \right)\end{array} \right.\]

    Từ (1)  có \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = 2{m^2} - 4\end{array} \right.\]

    Khi đó

    \[\begin{array}{l}P = x_1^3 + x_2^3 + x_3^3 = \left( {{x_1} + {x_1}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right] - 8\\ \Rightarrow P =  - 4{m^3} + 24m - 8 = f\left( m \right)\end{array}\]

    \[\begin{array}{l}f'\left( m \right) =  - 12{m^2} + 24 = 0 \Leftrightarrow m =  \pm \sqrt 2 \\f\left( {\sqrt 2 } \right) = 16\sqrt 2  - 8\\f\left( { - 2} \right) =  - 16\sqrt 2  - 8\end{array}\]

    Nên \[{P_{\max }} = 16\sqrt 2  - 8\]

    Chọn A.

      bởi Lan Anh 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON