YOMEDIA
NONE

Cho hàm số sau \(y = x + \dfrac{4}{{x - 2}}\) , giá trị nhỏ nhất của hàm số trên [- 1 ; 1] là:

A. – 4                           

B. – 3

C. – 7/3                       

D. – 2  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(D = R\backslash \{ 2\} ,\,\mathop {\lim }\limits_{x \to {2^ + }} y =  + \infty ,\)

    \(\mathop {\lim }\limits_{x \to {2^ - }} y =  - \infty \).

    Đồ thị hàm số có đường tiệm cận đứng là x = 2.

    \(y' = \dfrac{{{x^2} - 4x}}{{{{\left( {x - 2} \right)}^2}}},\,\,y' = 0\)

    \(\Rightarrow \,\,{x^2} - 4x = 0 \Leftrightarrow \,\,\left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)

    Ta có bảng biến thiên :


    \(0 \in [ - 1;1]\,,\,\,y( - 1) = \dfrac{{ - 7}}{3},\,\)\(y(1) =  - 3,\,\,y(0) =  - 2\).

    Vậy giá trị nhỏ nhất của hàm số trên [- 1;1] là – 3 .

    Chọn đán án B.

      bởi Thu Hang 01/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON