YOMEDIA
NONE

Cho hàm số \(f\left( x \right)\) có \(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}},\)\(\forall x \in \mathbb{R}\). Hỏi hàm số đã cho có bao nhiêu điểm cực trị.

A. \(0\)                                        B. \(1\)

C. \(2\)                                        D. \(3\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có:

    \(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}}\) với \(\forall x \in \mathbb{R}\)

    \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x =  - 1\end{array} \right.\)

     

    Trong đó:

    + \(x = 0\) là nghiệm bội \(2017\) (là cực trị).

    + \(x = 1\) là nghiệm bội \(2018\) (không là cực trị).

    + \(x =  - 1\) là nghiệm bội \(2019\) (là cực trị).

    Vậy hàm số đã cho có 2 điểm cực trị.

    Chọn C.

      bởi Hy Vũ 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON