YOMEDIA
NONE

Cho biết đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận

A. \(4\).            

B. \(3\).            

C. \(1\).            

D. \(2\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • TXĐ: \(D = \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).

    Ta có

    \(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = 1 \Rightarrow y = 1\) là tiệm cận  ngang của đồ thị hàm số.

    \(\mathop {\lim }\limits_{x \to {\rm{\;}} - \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = {\rm{\;}} - 1 \Rightarrow y = {\rm{\;}} - 1\) là tiệm cận ngang của đồ thị hàm số.

    \(\mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = {\rm{\;}} - 1\) là tiệm cận đứng của đồ thị hàm số.

    \(\mathop {\lim }\limits_{x \to 1} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

    Chọn A.

      bởi Nhật Mai 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON