YOMEDIA
NONE

Cắt khối nón bởi một mặt phẳng qua trục, thiết diện là một tam giác đều có diện tích bằng \(25\sqrt 3 {a^2}\). Thể tích của khối nón đó có kết quả:

A. \(\dfrac{{125\sqrt 3 \pi {a^3}}}{3}\)              

B. \(\dfrac{{125\sqrt 3 \pi {a^3}}}{6}\)

C. \(\dfrac{{125\sqrt 3 \pi {a^3}}}{9}\)                   

D. \(\dfrac{{125\sqrt 3 \pi {a^3}}}{{12}}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tam giác \(SAB\) là tam giác đều có diện tích \(S = \dfrac{{A{B^2}\sqrt 3 }}{4} = 25\sqrt 3 {a^2} \Leftrightarrow A{B^2} = 100{a^2} \Rightarrow AB = 10a = SA\)

    Suy ra \(SH = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{{10}^2} - {5^2}}  = 5\sqrt 3 a\)

    Thể tích khối nón là: \(V = \dfrac{1}{3}\pi SH.O{A^2} = \dfrac{1}{3}\pi .{\left( {5a} \right)^2}.\left( {5\sqrt 3 a} \right) = \dfrac{{125{a^3}}}{3}\pi \)

    Chọn A.

      bởi Thùy Trang 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON