YOMEDIA
NONE

Các hàm số sau đây, hàm số nào có ba điểm cực trị ?

A. \(y = \dfrac{{2x - 4}}{{x + 1}}.\)

B. \(y =  - {x^4} - 4{x^2} + 2020.\)

C. \(y = {x^3} - 3{x^2} + 5.\)

D. \(y = 3{x^4} - {x^2} + 2019.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đáp án A: Hàm phân thức bậc nhất trên bậc nhất \(\left( {ad - bc \ne 0} \right)\) không có điểm cực trị (loại)

    Đáp án B: Ta có: \(y' =  - 4{x^3} - 8x\) \( =  - 4x\left( {{x^2} + 2} \right) = 0 \Leftrightarrow x = 0\)

    Do đó hàm số chỉ có một điểm cực trị \(x = 0\) (loại)

    Đáp án C: Hàm đa thức bậc ba chỉ có tối đa hai điểm cực trị (loại)

    Đáp án D: \(y' = 12{x^3} - 2x = 2x\left( {6{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \dfrac{1}{{\sqrt 6 }}\end{array} \right.\) nên hàm số đã cho có ba điểm cực trị.

    Chọn D.

      bởi thu thủy 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON