YOMEDIA
NONE

Bài 1.9 trang 14 sách bài tập Hình học 12

Bài 1.9 (Sách bài tập trang 14)

Cho khối bát diện đều ABCDEF (h.1.9). Gọi O là giao điểm của AC, BD, M và N theo thứ tự là trung điểm của AB và AE. Tính diện tích thiết diện tạo bởi khối bát đó với mặt phẳng (OMN) ?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Khối đa diện

    Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN

    Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng \(\dfrac{a}{2}\)

    Do đó diện tích của nó bằng \(\dfrac{3\sqrt{3}}{8}a^2\)

      bởi Nguyễn Nhật Hạ 10/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON