AMBIENT

Tìm số hạng chứa x2 trong khai triển Niu – tơn của \((\frac{2}{\sqrt{x}}-\sqrt[3]{x})^n\)

bởi thùy trang 08/02/2017

Tìm số hạng chứa x2 trong khai triển Niu – tơn của \((\frac{2}{\sqrt{x}}-\sqrt[3]{x})^n\), với x > 0 và n là số nguyên dương thỏa \(C_{n}^{3}+A_{n}^{2}=5C_{n}^{2}\) ( trong đó \(C_{n}^{k},A_{n}^{k}\)  lần lượt là tổ hợp chập k và chỉnh hợp chập k của n).

RANDOM

Câu trả lời (1)

  • Ta có: \(C_{n}^{3}+A_{n}^{2}=5C_{n}^{2}\Leftrightarrow \frac{n!}{3!(n-3)!}+\frac{n!}{(n-2)!}=5.\frac{n!}{2!(n-2)!}\)
    \(\Leftrightarrow \frac{1}{6}+\frac{1}{n+2}=\frac{5}{2(n-2)}\Leftrightarrow n-2+6=15\Leftrightarrow n=11\)
    Khi đó: \((\frac{2}{\sqrt{x}}-\sqrt[3]{x})^{11}=\sum_{k=0}^{11}C_{11}^{k}.(\frac{2}{\sqrt{x}})^{11-k}.(-\sqrt[3]{x})^{k}\)
    \(=\sum_{k=0}^{11}C_{11}^{k}(-1)^k.2^{11-k}.x^{\frac{k-11}{2}+\frac{k}{3}}\)
    Số hạng chứa x2 phải thỏa mãn \({\frac{k-11}{2}+\frac{k}{3}}=2\Leftrightarrow \frac{5k-33}{6}=2\Leftrightarrow k=9\)
    Vậy số hạng chứa x2 trong khai triển của \((\frac{2}{\sqrt{x}}-\sqrt[3]{x})^x\) là \((-1)^9C_{11}^{2}x^2\)

    bởi Anh Nguyễn 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

AMBIENT
?>