YOMEDIA
NONE
  • Câu hỏi:

    Xét a và b là hai số thực dương tùy ý. Đặt \(x = \ln {\left( {{a^2} - ab + {b^2}} \right)^{1000}},{\rm{ }}y = 1000\ln a - \ln \frac{1}{{{b^{1000}}}}.\)

    Khẳng định nào dưới đây là khẳng định đúng?

    • A. x<y.  
    • B. x>y. 
    • C. \(x\leq y\)
    • D. \(x\geq y\)

    Đáp án đúng: D

    Với a, b>0 ta có  \(x = \ln {\left( {{a^2} - ab + {b^2}} \right)^{1000}} = 1000\ln \left( {{a^2} - ab + {b^2}} \right).\)

    \(y = 1000\ln a - \ln \frac{1}{{{b^{1000}}}} = 1000\ln a + 1000\ln b = 1000\ln \left( {ab} \right).\)

    Xét hiệu: \(x - y = 1000\left[ {\ln \left( {{a^2} - ab + {b^2}} \right) - \ln \left( {ab} \right)} \right]\) (1)

    Mặt khác: \(\left( {{a^2} - ab + {b^2}} \right) - ab = {\left( {a - b} \right)^2} \ge 0 \Rightarrow {a^2} - ab + {b^2} \ge ab > 0\)

    Khi đó từ (1) \(\Rightarrow x - y \ge 0 \Rightarrow x \ge y,\) dấu "=" xảy ra khi a=b>0

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON