YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ toạ độ Oxyz, cho đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-1}{2}=\frac{z}{2}\) và mặt phẳng \(\left( \alpha  \right):x-2y+2z-5=0.\) Gọi (P) là mặt phẳng chứa \(\Delta \) và tạo với \(\left( \alpha  \right)\) một góc nhỏ nhất. Phương trình mặt phẳng (P) có dạng \(ax+by+cx+d=0\left( a,b,c,d\in \mathbb{Z};a,b,c,d<5 \right).\) Khi đó tích abcd bằng

    • A. -60
    • B. -120
    • C. 120
    • D. 60

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\left( \alpha  \right)\) có vectơ pháp tuyến \[\overrightarrow{n}=\left( 1;-2;2 \right).\)

    \(\Delta :\frac{x-1}{1}=\frac{y-1}{2}=\frac{z}{2}\) là giao tuyến của hai mặt phẳng \[2x-y-1=0;y-z-1=0.\)

    (P) là mặt phẳng chứa \(\Delta \) nên phương trình (P) có dạng

    \(m\left( 2x-y-1 \right)+n\left( y-z-1 \right)=0;\left( {{m}^{2}}+{{n}^{2}}>0 \right).\)

    \(\Rightarrow 2mx+\left( n-m \right)y-nz-m-n=0\)

    \(\cos \left( \left( P \right),\left( \alpha  \right) \right)=\frac{\left| 4m-4n \right|}{3\sqrt{5{{m}^{2}}-2mn+2{{n}^{2}}}}.\)

    + Với n = 0: \(\cos \left( \left( P \right),\left( \alpha  \right) \right)=\frac{\left| 4m \right|}{3\sqrt{5{{m}^{2}}}}=\frac{4}{3\sqrt{5}}\)

    + Với \(n\ne 0:\cos \left( \left( P \right),\left( \alpha  \right) \right)=\frac{4\left| \frac{m}{n}-1 \right|}{\sqrt[3]{5{{\left( \frac{m}{n} \right)}^{2}}-2\frac{m}{n}+2}}\)

    Đặt \(t=\frac{m}{n},\cos \left( \left( P \right),\left( \alpha  \right) \right)=\frac{4\left| t-1 \right|}{3\sqrt{5{{t}^{2}}-2t+2}}=\frac{4}{3}\sqrt{\frac{{{t}^{2}}-2t+1}{5{{t}^{2}}-2t+2}}\)

    Xét \(f\left( t \right)=\frac{{{t}^{2}}-2t+1}{5{{t}^{2}}-2t+2}\)

    \(f'\left( t \right) = \frac{{8{t^2} - 6t - 2}}{{{{\left( {5{t^2} - 2t + 2} \right)}^2}}};f'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l} t = 1\\ t = - \frac{1}{4} \end{array} \right.\)

    (P) là mặt phẳng tạo với \[\left( \alpha  \right)\) một góc nhỏ nhất nên \(\cos \left( \left( P \right),\left( \alpha  \right) \right)=\frac{4}{3}\sqrt{\frac{5}{9}}=\frac{4\sqrt{5}}{9}\)

    Khi đó \(t=-\frac{1}{4}\Rightarrow \frac{m}{n}=-\frac{1}{4}.\)

    Chọn m=1;n=-4 ta được phương trình mặt phẳng \(\left( P \right):2x-5y+4z+3=0.\)

    Khi đó \(a=2;b=-5;c=4;d=3\Rightarrow abcd=-120.\)

    ATNETWORK

Mã câu hỏi: 270155

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON