YOMEDIA
NONE
  • Câu hỏi:

    Cho số phức z thoả mãn \(\left| z-8 \right|+\left| z+8 \right|=20.\) Gọi m, n lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| z \right|.\) Tính P = m + n.

    • A. P = 16
    • B. P = \(10\sqrt 2 .\)
    • C. P = 17
    • D. P = \(5\sqrt {10} .\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(z=x+yi\left( x,y\in \mathbb{R} \right)\) và \(M\left( x,y \right)\) là điểm biểu diễn của số phức z trong mặt phẳng phức. Xét các điểm \({{F}_{1}}\left( -8;0 \right),{{F}_{2}}\left( 8;0 \right).\)

    Ta có: \(M{{F}_{1}}=\sqrt{{{\left( -8-x \right)}^{2}}+{{\left( -y \right)}^{2}}}=\sqrt{{{\left( x+8 \right)}^{2}}+{{y}^{2}}}=\left| z+8 \right|.\)

    \(M{{F}_{2}}=\sqrt{{{\left( 8-x \right)}^{2}}+{{\left( -y \right)}^{2}}}=\sqrt{{{\left( x-8 \right)}^{2}}+{{y}^{2}}}=\left| z-8 \right|.\)

    \(\Rightarrow \left| z-8 \right|+\left| z+8 \right|=20\Leftrightarrow \sqrt{{{\left( x+8 \right)}^{2}}+{{y}^{2}}}+\sqrt{{{\left( x-8 \right)}^{2}}+{{y}^{2}}}=20\Leftrightarrow M{{F}_{1}}+M{{F}_{2}}=20.\)

    Do \(M{{F}_{1}}+M{{F}_{2}}\ge {{F}_{1}}{{F}_{2}}\Rightarrow \) Tập hợp điểm M là một elip có dạng \(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\)

    \( \Rightarrow \left\{ \begin{array}{l} 2a = 20\\ c = 8 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {a^2} = 100\\ {b^2} = {a^2} - {c^2} = 36 \end{array} \right. \Rightarrow \frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1 \Rightarrow \left\{ \begin{array}{l} \max \left| z \right| = 10\\ \min \left| z \right| = 6 \end{array} \right. \Rightarrow m + n = 16.\)

    ATNETWORK

Mã câu hỏi: 270153

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON