YOMEDIA
NONE
  • Câu hỏi:

    Cho lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) cạnh đáy bằng a, chiều cao bằng 3a. Mặt phẳng (P) qua \({B}'\) và vuông góc với \({A}'C\) chia lăng trụ thành hai khối. Biết thể tích của hai khối là V1 và V2 với \({{V}_{1}}<{{V}_{2}}.\) Tỉ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\) bằng?

    • A. \(\frac{1}{{47}}.\)
    • B. \(\frac{1}{{107}}.\)
    • C. \(\frac{1}{7}.\)
    • D. \(\frac{1}{{108}}.\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi H là trung điểm của \({A}'{C}'\), tam giác \(\Delta {A}'{B}'{C}'\) đều nên \({B}'H\bot {A}'{C}'.\)

    Trong \(\left( {A}'{C}'CA \right)\), kẻ \(HE\bot {A}'C, HE\cap {A}'A=I.\)

    Ta có \(\left\{ \begin{array}{l} B'H \bot A'C'\\ HI \bot A'C' \end{array} \right. \Rightarrow A'C' \bot \left( {B'HI} \right) \Rightarrow \left( P \right) \equiv \left( {B'HI} \right).\)

    \(\Delta A'EH \sim \Delta A'C'C \Rightarrow \frac{{A'E}}{{A'H}} = \frac{{A'C'}}{{A'C}} \Rightarrow A'E = \frac{{A'C'.A'H}}{{A'C}} = \frac{{a\sqrt {10} }}{{20}}.\)

    \(\Delta A'IH \sim \Delta A'C'C \Rightarrow \frac{{IH}}{{A'H}} = \frac{{A'C}}{{C'C}} \Rightarrow IH = \frac{{A'C.A'H}}{{C'C}} = \frac{{a\sqrt {10} }}{6}.\)

    \({S_{B'HI}} = \frac{1}{2}B'H.HI = \frac{{{a^2}\sqrt {30} }}{{24}} \Rightarrow {V_1} = \frac{1}{3}.{S_{B'HI}}.A'E = \frac{1}{3}.\frac{{{a^2}\sqrt {30} }}{{24}}.\frac{{a\sqrt {10} }}{{20}} = \frac{{{a^3}\sqrt 3 }}{{144}}.\)

    \({V_{ABC.A'B'C'}} = {S_{ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.3a = \frac{{3{a^3}\sqrt 3 }}{4},\,\,{V_2} = \frac{{107}}{{144}}.{a^3}\sqrt 3 \) do đó \(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{{107}}.\)

    ATNETWORK

Mã câu hỏi: 270154

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON