YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;3 \right)\) và \(B\left( 6;5;5 \right).\) Xét khối nón \(\left( N \right)\) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( N \right)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình dạng 2x+by+cz+d=0. Giá trị của b+c+d bằng

    • A. -21
    • B. -12
    • C. -18
    • D. -15

    Lời giải tham khảo:

    Đáp án đúng: C

    Không mất tính tổng quát ta giả sử đường cao của hình trụ trùng với AB.

    Gọi I là tâm mặt cầu đường kính AB.

    Gọi H là hình chiếu của I lên mặt phẳng chứa đường tròn đáy của hình nón \(\left( N \right).\)

    Đặt R,r lần lượt là bán kính mặt cầu và bán kính đường tròn đáy của hình nón.

    Ta có \(AB=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}}=\sqrt{36}=6\Rightarrow R=\frac{1}{2}AB=3.\)

    Gọi h là chiều cao hình trụ \(\left( h>3 \right)\Rightarrow IH=h-3\)

    \(\Rightarrow r=\sqrt{{{3}^{2}}-{{\left( h-3 \right)}^{2}}}=\sqrt{-{{h}^{2}}+6h}.\)

    ⇒ Thể tích khối nón \(\left( N \right)\) là: \(V=\frac{1}{3}\pi {{r}^{2}}h=\frac{1}{3}\pi .\left( -{{h}^{2}}+6h \right).h=\frac{1}{3}\pi {{h}^{2}}\left( 6-h \right).\)

    Áp dụng BĐT Cô-si ta có: \({{h}^{2}}\left( 6-h \right)=\frac{1}{2}h.h.\left( 12-2h \right)\le \frac{1}{2}.{{\left( \frac{h+h+12-2h}{3} \right)}^{3}}=32.\)

    \(\Rightarrow {{V}_{\left( N \right)}}\le \frac{1}{3}\pi .32=\frac{32\pi }{3}.\)

    Dấu ''='' xảy ra \(\Leftrightarrow h=12-2h=h=4\Rightarrow \frac{AH}{AB}=\frac{4}{6}=\frac{2}{3}\Rightarrow \overrightarrow{AH}=\frac{2}{3}\overrightarrow{AB}.\)

    \( \Rightarrow \left( {{x_H} - 2;{y_H} - 1;{z_H} - 3} \right) = \frac{2}{3}\left( {4;4;2} \right)\)

    \( \Rightarrow \left\{ \begin{array}{l} {x_H} - 2 = \frac{8}{3}\\ {y_H} - 1 = \frac{8}{3}\\ {z_H} - 3 = \frac{4}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_H} = \frac{{14}}{3}\\ {y_H} = \frac{{11}}{3}\\ {z_H} = \frac{{13}}{3} \end{array} \right. \Rightarrow H\left( {\frac{{14}}{3};\frac{{11}}{3};\frac{{13}}{3}} \right)\)

    ⇒ Mặt phẳng chứa đường tròn đáy của hình nón đi qua \(H\left( \frac{14}{3};\frac{11}{3};\frac{13}{3} \right)\) và có 1 VTPT là \(\overrightarrow{n} =\frac{1}{2}\overrightarrow{AB}=\left( 2;2;1 \right)\)

    Vậy phương trình mặt phẳng chứa đường tròn đáy của hình nón:

    \(2\left( x-\frac{14}{3} \right)+2\left( y-\frac{11}{3} \right)+1\left( z-\frac{13}{3} \right)=0\Leftrightarrow 2x+2y+z-21=0.\)

    ATNETWORK

Mã câu hỏi: 258453

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON