YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng \(\left( SBC \right)\) bằng \({{45}^{0}}\) (tham khảo hình bên). Thể tích của khối chóp S.ABC bằng

    • A. \(\frac{{{a^3}}}{8}.\)
    • B. \(\frac{{3{a^3}}}{8}.\)
    • C. \(\frac{{\sqrt 3 {a^3}}}{{12}}.\)
    • D. \(\frac{{{a^3}}}{4}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi M là trung điểm BC, trong \(\left( SAM \right)\) kẻ \(AH\bot SM\left( H\in SM \right)\) ta có:

    \(\left\{ \begin{align} & BC\bot AM \\ & BC\bot SA \\ \end{align} \right.\Rightarrow BC\bot \left( SAM \right)\Rightarrow BC\bot AH\)

    \(\left\{ \begin{align} & AH\bot BC\left( cmt \right) \\ & AH\bot SM \\ \end{align} \right.\Rightarrow AH\bot \left( SBC \right)\)

    \(\Rightarrow SH$ là hình chiếu vuông góc của SA lên \(\left( SBC \right)\)

    \(\Rightarrow \angle \left( SA;\left( SBC \right) \right)=\angle \left( SA;SH \right)\Leftrightarrow ASH=\angle ASM={{45}^{0}}\Rightarrow \Delta SAM\) vuông cân tại A.

    Vì ABC là tam giác đều cạnh a nên \(AM=\frac{a\sqrt{3}}{2}\Rightarrow SA=AM=\frac{a\sqrt{3}}{2}\) và \({{S}_{\Delta ABC}}=\frac{{{a}^{2}}\sqrt{3}}{4}.\)

    Vậy \({{V}_{S.ABC}}=\frac{1}{3}SA.{{S}_{\Delta ABC}}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{{{a}^{3}}}{8}.\)

    ATNETWORK

Mã câu hỏi: 258446

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON