YOMEDIA
NONE
  • Câu hỏi:

    Trên đoạn [1; 5], hàm số \(y=x+\dfrac{4}{x}\) đạt giá trị nhỏ nhất tại điểm 

    • A. x=5
    • B. x=2
    • C. x=1
    • D. x=4

    Lời giải tham khảo:

    Đáp án đúng: B

    Hàm số \(y=f(x)=x+\dfrac{4}{x}\) xác định trên đoạn [1; 5].

    Ta có:

    \(\begin{array}{l}
    y' = 1 - \frac{4}{{{x^2}}}\\
    y' = 0 \Leftrightarrow 1 - \frac{4}{{{x^2}}} = 0 \Leftrightarrow x = 2 \in [1;5] \vee x =  -  \notin [1;5]
    \end{array}\)

    Mà \(f(1)=5;\,f(5)=\dfrac{29}{2};\,f(2)=4\) nên suy ra giá trị nhỏ nhất của hàm số là 4 tại x=2.

    ATNETWORK

Mã câu hỏi: 361349

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON