YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu số nguyên a, sao cho ứng với mỗi a, tồn tại ít nhất bốn số nguyên \(b \in(-12; 12)\) thỏa mãn \(4^{a^2+b} \leq 3^{b-a}+65\)? 

    • A. 4
    • B. 6
    • C. 5
    • D. 7

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \(4^{a^2+b} \leq 3^{b-a}+65 \Leftrightarrow 4^{a^2+b}-3^{b-a}-65 \leq 0\).

    \(\Leftrightarrow 4^{a^2}-\dfrac{3^{b-a}}{4^b}-\dfrac{65}{4^b} \leq 0 \Leftrightarrow-\left(\dfrac{3}{4}\right)^b \cdot \dfrac{1}{3^a}-65 \cdot\left(\dfrac{1}{4}\right)^b+4^{a^2} \leq 0\) Xét hàm số \(f(b)=-\left(\dfrac{3}{4}\right)^b \cdot \dfrac{1}{3^a}-65 \cdot\left(\dfrac{1}{4}\right)^b+4^{a^2}, b \in(-12; 12)\).

    Suy ra \(\Rightarrow f'(b)=-\ln \left(\dfrac{3}{4}\right) \cdot\left(\dfrac{3}{4}\right)^b \cdot \dfrac{1}{3^a}-65 \ln \left(\dfrac{1}{4}\right) \cdot\left(\dfrac{1}{4}\right)^b>0\). Do đó \(f(b)\) đồng biến.

    Để \(f(b) \leq 0\) có it nhất 4 giá trị nguyên thỏa mãn thì \(f(-8) \leq 0 \Leftrightarrow 4^{a^2-8} \leq 3^{-a-8}+65\) \(\Rightarrow 4^{a^2-5} \leq 65 \Rightarrow a^2-8 \leq \log _4 65\). Do \(a \in \mathbb{Z} \Rightarrow a \in\{-3;-2; \ldots 3\}\). Có 7 giá trị nguyên của \(a\).

    ADSENSE

Mã câu hỏi: 361412

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF