YOMEDIA
NONE
  • Câu hỏi:

    Số nghiệm của phương trình \(2{x^2} + 1 = \dfrac{1}{{{x^2}}} - 4\) là:

    • A. 1
    • B. 2
    • C. 3
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: B

    Điều kiện : \(x \ne 0.\)

    Khử mẫu và biến đổi ta được

    \(\begin{array}{l}2{x^4} + {x^2} = 1 - 4{x^2}\\ \Leftrightarrow 2{x^4} + 5{x^2} - 1 = 0\end{array}\)

    Đặt \({x^2} = t\left( {t \ge 0} \right)\) ta có  \(2{t^2} + 5t - 1 = 0\)

    \(\Delta  = {\left( { - 5} \right)^2} - 4.2\left( { - 1} \right) = 33 > 0\) nên phương trình có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{ - 5 + \sqrt {33} }}{4}\left( \,nhận \right)\\t = \dfrac{{ - 5 - \sqrt {33} }}{4}\left( \,loại \right)\end{array} \right.\)

    Với \(t = \dfrac{{ - 5 + \sqrt {33} }}{4} \)\(\Rightarrow {x^2} = \dfrac{{\sqrt {33}  - 5}}{4}\)\( \Rightarrow \left[ \begin{array}{l}x = \sqrt {\dfrac{{\sqrt {33}  - 5}}{4}} \\x =  - \sqrt {\dfrac{{\sqrt {33}  - 5}}{4}} \end{array} \right.\)

    Vậy phương trình đã cho có hai nghiệm \(x =  \pm \sqrt {\dfrac{{\sqrt {33}  - 5}}{4}} \)

    ATNETWORK

Mã câu hỏi: 216999

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON