YOMEDIA
NONE
  • Câu hỏi:

    Phương trình \(\log _2^2x - 2{\log _4}(4x) - 4 = 0\) có hai nghiệm \({x_1},{x_2}.\)Tính tích \(P = {x_1}.{x_2}.\) 

    • A. P=8
    • B. P=2
    • C. \(P=\frac{1}{4}\)
    • D. \(P=\frac{33}{4}\)

    Đáp án đúng: B

    \(\begin{array}{l} \log _2^2x - 2{\log _4}(4x) - 4 = 0 \Leftrightarrow \left\{ \begin{array}{l} x > 0\\ {\left( {{{\log }_2}x} \right)^2} - (2 - {\log _2}x) - 4 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x > 0\\ {({\log _2}x)^2} - {\log _2}x - 6 = 0 \end{array} \right. \end{array}\)

    \(\Leftrightarrow \left\{ \begin{array}{l} x > 0\\ ({\log _2}x - 3)({\log _2}x + 2) = 0 \end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 8}\\ {x = \frac{1}{4}} \end{array}} \right. \Rightarrow {x_1}.{x_2} = 8.\frac{1}{4} = 2\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON