-
Câu hỏi:
Phương trình \(\log _2^2x - 2{\log _4}(4x) - 4 = 0\) có hai nghiệm \({x_1},{x_2}.\)Tính tích \(P = {x_1}.{x_2}.\)
- A. P=8
- B. P=2
- C. \(P=\frac{1}{4}\)
- D. \(P=\frac{33}{4}\)
Đáp án đúng: B
\(\begin{array}{l} \log _2^2x - 2{\log _4}(4x) - 4 = 0 \Leftrightarrow \left\{ \begin{array}{l} x > 0\\ {\left( {{{\log }_2}x} \right)^2} - (2 - {\log _2}x) - 4 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x > 0\\ {({\log _2}x)^2} - {\log _2}x - 6 = 0 \end{array} \right. \end{array}\)
\(\Leftrightarrow \left\{ \begin{array}{l} x > 0\\ ({\log _2}x - 3)({\log _2}x + 2) = 0 \end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 8}\\ {x = \frac{1}{4}} \end{array}} \right. \Rightarrow {x_1}.{x_2} = 8.\frac{1}{4} = 2\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ
- Giải bất phương trình {log_1/2}^2(x)+3{log_1/2}x+2
- Giải bất phương trình 4{log_25}x+{log_x}5>=3
- Giải phương trình {log_3}^2(x)-4{log_3}(3x)+7=0
- Giả sử p và q là các số thực dương sao cho {log _9}p = {log _{12}}q = {log_16}(p+q)
- Giải bất phương trình: {log _4}x.{log _2}(4x)+{log_sqrt2}(x^3/2)
- Tính P=x_1+x_2 với x_1,x_2 là các nghiệm của phương trình {log _2}^2(x) - 3{log _2}x + 2 = 0.
- Bất phương trình {log _4}x - {log _x}4
- Hỏi có bao nhiêu giá trị nguyên của m để bất phương trình {log _2}^2(x) + m{log _2}x - m >=0 nghiệm đúng với mọi giá trị của x>0
- Tìm tất cả các giá trị thực của tham số m để phương trình 4log _4^2x - 2{log _2}x + 3 - m = 0 có nghiệm thuộc đoạn [1/2;4].C
- Cho (x,y > 0;,,{log _y}x + {log _x}y = frac{{10}}{3}) và (xy = 144) thì (P = frac{{x + y}}{2}) bằng: