YOMEDIA
NONE
  • Câu hỏi:

    Bất phương trình \({\log _{\frac{1}{2}}}^2x + 3{\log _{\frac{1}{2}}}x + 2 \le 0\) có tập nghiệm \(S = \left[ {a;b} \right].\) Tính giá trị của \(P = {a^2}\sqrt b .\)

    • A. P=16
    • B. P=12
    • C. P=8
    • D. P=4

    Đáp án đúng: C

    Điều kiện: x>0. Khi đó:

    \(\log _{\frac{1}{2}}^2x = 3{\log _{\frac{1}{2}}}x + 2 \le 0 \Leftrightarrow \left( {{{\log }_{{2^{ - 1}}}}x + 1} \right)\left( {{{\log }_{{2^{ - 1}}}}x + 2} \right) \le 0\)

    \(\begin{array}{l} \Leftrightarrow (1 - {\log _2}x)(2 - {\log _2}x) \le 0 \Leftrightarrow 1 \le {\log _2}x \le 2\\ \Leftrightarrow {2^1} \le x \le {2^4} \Leftrightarrow 2 \le x \le 4 \end{array}\)

    Kết hợp với điều kiện, ta được:

     \(\begin{array}{l} S = \left[ {2;4} \right] = \left[ {a;b} \right]\\ \Rightarrow \left\{ {\begin{array}{*{20}{c}} {a = 2}\\ {b = 4} \end{array}} \right. \Rightarrow {a^2}\sqrt b = 8. \end{array}\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON