-
Câu hỏi:
Trong không gian Oxyz, cho ba điểm \(A\left( {0;1;2} \right),B\left( {1;1;1} \right),C\left( {2; - 2;3} \right)\) và mặt phẳng\(\left( P \right):x - y + z + 3 = 0.\) Tìm điểm M trên (P) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.
- A. \(M\left( {1;0;2} \right)\)
- B. \(M\left( {0;1;1} \right)\)
- C. \(M\left( { - 1;2;0} \right)\)
- D. \(M\left( { - 3;1;1} \right)\)
Đáp án đúng: C
Gọi G là trọng tâm tam giác ABC, suy ra \(G\left( {1;0;2} \right)\)
Gọi G’ là hình chiếu của G lên (P).
Đường thẳng \(GG' \bot \left( P \right) \Rightarrow GG'\) nhận \(\overrightarrow n = \left( {1; - 1;1} \right)\) làm vecto chỉ phương.\( \Rightarrow GG':\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = - t}\\{z = 2 + t}\end{array}} \right. \Rightarrow G\left( {1 + t; - t;2 + t} \right)\)
\(G \in \left( P \right) \Rightarrow 1 + t - \left( { - t} \right) + 2 + t + 3 = 0 \Leftrightarrow 3t = - 6 \Leftrightarrow t = - 2 \Rightarrow G\left( { - 1;2;0} \right)\)
Gọi \(M \in \left( P \right)\) có \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {3\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right| = \left| {3\overrightarrow {MG} } \right| \ge \left| {3\overrightarrow {G'G} } \right|\)
Vậy điểm M trên (P) để \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất khi \(M \equiv G\left( { - 1;2;0} \right).\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ XÁC ĐỊNH ĐIỂM THỎA ĐIỀU KIỆN CHO TRƯỚC
- Cho hai điểm A(1;2;1) và B(4;5;-2) và mặt phẳng (P) có phương trình 3x-4y+5z+6=0, đường thẳng AB cắt (P) tại M, tính tỷ số MB/MA
- Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A(2;-3;1) lên đường thẳng Delta: x+1/2=y+2/-1=z/2
- Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến (P):2x + 2y + z + 6 = 0 bằng 3
- Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC bằng 2sqrt 2
- Giao điểm M của trục Ox với mặt phẳng (ABC) là điểm nào dưới đây biết A(1;1;1) và C(3;4; - 4)
- Tọa độ điểm đối xứng của A(4;1;-2) qua mặt phẳng (Oxz) là:
- Tìm tọa độ điểm M thuộc Delta sao cho MA^2+MB^2=28
- Tìm tọa độ điểm M thuộc mặt phẳng (α) sao cho S=MA^2+MB^2 đạt giá trị nhỏ nhất.
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng left( P ight):6x + 3y - 2z + 24 = 0 và điểm Aleft( {2;5;1} igh
- Ba mặt phẳng x+2y−z−6=0, 2x−y+3z+13=0, 3x−2y+3z+16=0 cắt nhau tại điểm A.