-
Câu hỏi:
Nếu \(\cos x + \sin x = \frac{1}{2}\) và \({0^0} < x < {180^0}\) thì \(\tan x{\rm{ = }} - \frac{{p + \sqrt q }}{3}\) với cặp số nguyên (p, q) là:
- A. (–4; 7)
- B. (4; 7)
- C. (8; 14)
- D. (8; 7)
Lời giải tham khảo:
Đáp án đúng: B
\(\begin{array}{l}
{\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 + 2\sin \alpha .\cos \alpha \\
\Rightarrow \sin \alpha .\cos \alpha = \frac{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2} - 1}}{2} = - \frac{3}{8}\\
\Rightarrow \left\{ \begin{array}{l}
\sin \alpha = \frac{{1 + \sqrt 7 }}{4}\\
\cos \alpha = \frac{{1 - \sqrt 7 }}{4}
\end{array} \right. \Rightarrow \tan \alpha = - \frac{{4 + \sqrt 7 }}{3}
\end{array}\)Suy ra (p;q)=(4;7)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Biểu thức \({\sin ^2}x.{\tan ^2}x + 4{\sin ^2}x - {\tan ^2}x + 3{\cos ^2}x\) không phụ thuộc vào x và có giá trị bằng:
- Giá trị của \(M = {\cos ^2}{15^0} + {\cos ^2}{25^0} + {\cos ^2}{35^0} + {\cos ^2}{45^0} + {\cos ^2}{105^0} + {\cos ^2}{115^0} + {\cos ^2}{125^0}\
- Cho \({\rm{cos}}\alpha = - \frac{2}{5}\,\,\,\left( {\pi < \alpha < \frac{{2\pi }}{3}} \right)\).
- Cho \(\sin a + \cos a = \frac{5}{4}\). Khi đó \(\sin a.\cos a\) có giá trị bằng:
- Nếu \(\cos x + \sin x = \frac{1}{2}\) và \({0^0} < x < {180^0}\) thì \(\tan x{\rm{ = }} - \frac{{p + \sqrt q }}{3}\) với c�
- Kết quả rút gọn của biểu thức \({\left( {\frac{{\sin \alpha + \tan \alpha }}{{{\rm{cos}}\alpha {\rm{ + 1}}}}} \right)^2} + 1\)
- Cho \(\cot \alpha = 3\).
- Tìm khẳng định sai trong các khẳng định sau đây?
- Để tính cos1200, một học sinh làm như sau:(I) sin1200 =\(\frac{{\sqrt 3 }}{2}\) (II) cos21200 = 1 – sin21200 &nb
- Cho \(\cot \alpha = \frac{1}{2}\left( {\pi < \alpha < \frac{{3\alpha }}{2}} \right)\) thì \({\sin ^2}\alpha .