YOMEDIA
NONE
  • Câu hỏi:

    Một tấm bìa hình tròn có bán kính bằng 5 được cắt thành hai hình quạt, sau đó quấn hai hình quạt đó thành hai hình nón (không có đáy). Biết một trong hai hình nón này có diện tích xung quanh là \(15\pi .\) Tính thể tích hình nón còn lại. Giả sử chiều rộng các mép dán không đáng kể.

    • A. \(\frac{{4\pi \sqrt {21} }}{3}\)
    • B. \(2\pi \sqrt {21} \)
    • C. \(\frac{{2\pi \sqrt {21} }}{3}\)
    • D. \(4\pi \sqrt {21} \)

    Lời giải tham khảo:

    Đáp án đúng: A

    Diện tích hình tròn là \(S = \pi {r^2} = 25\pi \) 

    Diện tích xung quanh hình nón còn lại là \({S_2} = 25\pi  - 15\pi  = 10\pi \) 

    Nhận xét rằng khi quấn hình quạt được cắt từ hình tròn thành hình nón thì đường sinh của hình nón chính là bán kính của hình tròn. Từ đó hình nón còn lại có đường sinh l = 5.

    Lại có diện tích xung quanh hình nón còn lại là \(10\pi\) nên gọi R là bán kính hình nón này thì

    \(S{}_{xq} = \pi Rl \Rightarrow 10\pi  = \pi R.5 \Rightarrow R = 2\) 

    Ta gọi chiều cao hình nón này là h (h > 0) thì \(h{}^2 + {R^2} = {l^2} \Rightarrow h = \sqrt {{l^2} - {R^2}}  = \sqrt {{5^2} - {2^2}}  = \sqrt {21} \) 

    Thể tích hình nón còn lại là \(V = \frac{1}{3}\pi {R^2} = \frac{1}{3}\pi {.2^2}.\sqrt {21}  = \frac{{4\pi \sqrt {21} }}{3}.\) 

    ATNETWORK

Mã câu hỏi: 58885

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON