YOMEDIA
NONE
  • Câu hỏi:

    Gọi N(t) là số phần trăm cacbon 14 còn lại trong một bộ phận của một cây sinh trưởng từ t năm trước đây thì ta có công thức \(N\left( t \right) = 100.{\left( {0,5} \right)^{\frac{t}{A}}}{\rm{ }}\left( \% \right)\) với A là hằng số. Biết rằng một mẫu gỗ có tuổi khoảng 3754 năm thì lượng cácbon 14 còn lại là 65%. Phân tích mẫu gỗ từ một công trình kiến trúc cổ, người ta thấy lượng cácbon 14 còn lại trong mẫu gỗ là 63%. Hãy xác định tuổi của mẫu gỗ được lấy từ công trình đó

    • A. 3874
    • B. 3833
    • C. 3834
    • D. 3843

    Lời giải tham khảo:

    Đáp án đúng: B

    Theo bài ra ta có \(65 = 100.{\left( {0,5} \right)^{\frac{{3754}}{A}}} \Leftrightarrow 0,65 = {\left( {0,5} \right)^{\frac{{3754}}{A}}} \Leftrightarrow \frac{{3754}}{A} = {\log _{0,5}}0,65 \Leftrightarrow A = \frac{{3754}}{{{{\log }_{0,5}}0,65}}\).

    Do mẫu gỗ còn 63% lượng Cacbon 14 nên ta có:

    \(63 = 100.{\left( {0,5} \right)^{\frac{t}{A}}} \Leftrightarrow 0,63 = {\left( {0,5} \right)^{\frac{t}{A}}} \Leftrightarrow \frac{t}{A} = {\log _{0,5}}0,63 \Leftrightarrow t = A.{\log _{0,5}}0,63 = \frac{{3754}}{{{{\log }_{0,5}}0,65}}.{\log _{0,5}}0,63 \approx 3833\).

    ATNETWORK

Mã câu hỏi: 237894

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON