-
Câu hỏi:
Trong không gian cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) và mặt phẳng \(\left( P \right):2x - 2y + z + 3 = 0\). Gọi M(a; b; c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến (P) là lớn nhất. Tính tổng a+b+c.
- A. \(a+b+c=5\)
- B. \(a+b+c=6\)
- C. \(a+b+c=7\)
- D. \(a+b+c=8\)
Đáp án đúng: C
Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) có tâm I(1;2;3) và bán kính R=3.
Gọi d là đường thẳng đi qua I(1;2;3) và vuông góc (P).
Suy ra phương trình tham số của đường thẳng d là \(\left\{ \begin{array}{l} x = 1 + 2t\\ y = 2 - 2t\\ z = 3 + t \end{array} \right.\).
Gọi A,B lần lượt là giao của d và (S), khi đó tọa độ A, B ứng với t là nghiệm của phương trình:
\({\left( {1 + 2t - 1} \right)^2} + {\left( {2 - 2t - 2} \right)^2} + {\left( {3 + t - 3} \right)^2} = 9 \Leftrightarrow \left[ \begin{array}{l} t = 1\\ t = - 1 \end{array} \right.\)
Với \(t = 1 \Rightarrow A\left( {3;0;4} \right) \Rightarrow d\left( {A;(P)} \right) = \frac{{13}}{3}.\)
Với \(t = - 1 \Rightarrow B\left( { - 1;4;2} \right) \Rightarrow d\left( {B;(P)} \right) = \frac{5}{3}.\)
Với mọi điểm M(a;b;c) trên (S) ta luôn có \(d\left( {B;(P)} \right) \le d\left( {M;(P)} \right) \le d\left( {A;(P)} \right).\)
Vậy khoảng cách từ M đến (P) là lớn nhất bằng \(\frac{13}{3}\) khi M(3;0;4).
Do đó a+b+c=7.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ XÁC ĐỊNH ĐIỂM THỎA ĐIỀU KIỆN CHO TRƯỚC
- Tìm tọa độ của điểm M’ đối xứng với M qua trục Oy biết M(2;-1;-3)
- Đường thẳng Delta là hình chiếu vuông góc của đường thẳng d trên mặt phẳng (Oxy). Tìm tọa độ giao điểm I của đường thẳng Delta với mặt phẳng (P)
- Tìm hình chiều vuông góc của M(1;2;3) trên trục Ox
- Tìm điểm M trên (P) sao cho (left| {overrightarrow {MA} + overrightarrow {MB} + overrightarrow {MC} } ight|) đạt giá trị nhỏ nhất
- Cho hai điểm A(1;2;1) và B(4;5;-2) và mặt phẳng (P) có phương trình 3x-4y+5z+6=0, đường thẳng AB cắt (P) tại M, tính tỷ số MB/MA
- Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A(2;-3;1) lên đường thẳng Delta: x+1/2=y+2/-1=z/2
- Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến (P):2x + 2y + z + 6 = 0 bằng 3
- Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC bằng 2sqrt 2
- Giao điểm M của trục Ox với mặt phẳng (ABC) là điểm nào dưới đây biết A(1;1;1) và C(3;4; - 4)
- Tọa độ điểm đối xứng của A(4;1;-2) qua mặt phẳng (Oxz) là: