Có bao nhiêu cặp số nguyên dương (m; n) sao cho và ứng với mỗi cặp (m;n) tồn tại đúng 3 số thực thỏa mãn ?
YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu cặp số nguyên dương (m; n) sao cho \(m + n \le 10\) và ứng với mỗi cặp (m;n) tồn tại đúng 3 số thực \(a \in \left( { - 1;1} \right)\) thỏa mãn \(2{a^m} = n\ln \left( {a + \sqrt {{a^2} + 1} } \right)\)?

    • A. 7
    • B. 8
    • C. 10
    • D. 9

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \(2{a^m} = n\ln \left( {a + \sqrt {{a^2} + 1} } \right) \Leftrightarrow \frac{{2{a^m}}}{n} = \ln \left( {a + \sqrt {{a^2} + 1} } \right)\).

    Xét hai hàm số \(f\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) và \(g\left( x \right) = \frac{2}{n}{x^m}\) trên (-1;1).

    Ta có \(f'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }} > 0\) nên f(x) luôn đồng biến và \(f\left( { - x} \right) = \ln \left( { - x + \sqrt {{x^2} + 1} } \right) = \ln \left( {\frac{1}{{x + \sqrt {{x^2} + 1} }}} \right) = - \ln \left( {x + \sqrt {{x^2} + 1} } \right) = - f\left( x \right)\) nên f(x) là hàm số lẻ.

    + Nếu m chẵn thì g(x) là hàm số chẵn và có bảng biến thiên dạng

    Suy ra phương trình có nhiều nhất 2 nghiệm, do đó m lẻ.

    + Nếu m lẻ thì hàm số g(x) là hàm số lẻ và luôn đồng biến.

    Ta thấy phương trình luôn có nghiệm x = 0. Dựa vào tính chất đối xứng của đồ thị hàm số lẻ, suy ra phương trình đã cho có đúng 3 nghiệm trên (-1;1) khi có 1 nghiệm trên (0;1), hay \(f\left( 1 \right) > g\left( 1 \right) \Leftrightarrow \ln \left( {1 + \sqrt 2 } \right) < \frac{2}{n} \Leftrightarrow n < \frac{2}{{\ln \left( {1 + \sqrt 2 } \right)}} \approx 2,26 \Rightarrow n \in \left\{ {1;2} \right\}\).

    Đối chiếu điều kiện, với n = 1 suy ra \(m \in \left\{ {1;3;5;7;9} \right\}\), có 5 cặp số thỏa mãn

    Với n = 2 thì \(m \in \left\{ {1;3;5;7} \right\}\) có 4 cặp số thỏa mãn.

    Vậy có 9 cặp số thỏa mãn bài toán.

    ATNETWORK

Mã câu hỏi: 200306

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON