YOMEDIA
NONE
  • Câu hỏi:

    Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\). Gọi M, N, P lần lượt là các điểm thuộc các cạnh \(A{A}', B{B}', C{C}'\) sao cho \(AM=2M{A}', N{B}'=2NB, PC=P{C}'\). Gọi \({{V}_{1}}, {{V}_{2}}\) lần lượt là thể tích của hai khối đa diện ABCMNP và \({A}'{B}'{C}'MNP\). Tính tỉ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\).

    • A. \(\frac{{{V_1}}}{{{V_2}}} = 2\)
    • B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\)
    • C. \(\frac{{{V_1}}}{{{V_2}}} = 1\)
    • D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi V là thể tích khối lăng trụ \(ABC.{A}'{B}'{C}'\). Ta có \({{V}_{1}}={{V}_{M.ABC}}+{{V}_{M.BCPN}}\).

    \({{V}_{M.ABC}}=\frac{1}{3}{{S}_{ABC}}.d\left( M,\left( ABC \right) \right)=\frac{1}{3}.\frac{2}{3}{{S}_{ABC}}.d\left( {A}',\left( ABC \right) \right)=\frac{2}{9}V\).

    \({{V}_{M.{A}'{B}'{C}'}}=\frac{1}{3}{{S}_{{A}'{B}'{C}'}}.d\left( M,\left( {A}'{B}'{C}' \right) \right)=\frac{1}{3}.\frac{1}{3}{{S}_{{A}'{B}'{C}'}}.d\left( M,\left( {A}'{B}'{C}' \right) \right)=\frac{1}{9}V\).

    Do \(BC{C}'{B}'\) là hình bình hành và \(N{B}'=2NB, PC=P{C}'\) nên \({{S}_{{B}'{C}'PN}}=\frac{7}{5}{{S}_{BCPN}}\).

    Suy ra \({{V}_{M.{B}'{C}'PN}}=\frac{7}{5}{{V}_{M.BCPN}}\), Từ đó \(V={{V}_{M.ABC}}+{{V}_{M.BCPN}}+{{V}_{M.{A}'{B}'{C}'}}+{{V}_{M.{B}'{C}'PN}}\)

    \(\Leftrightarrow V=\frac{2}{9}V+{{V}_{M.BCPN}}+\frac{1}{9}V+\frac{7}{5}{{V}_{M.BCPN}}\Leftrightarrow {{V}_{M.BCPN}}=\frac{5}{18}V\).

    Như vậy \({{V}_{1}}=\frac{2}{9}V+\frac{5}{18}V=\frac{1}{2}V\Rightarrow {{V}_{2}}=\frac{1}{2}V\). Bởi vậy: \(\frac{{{V}_{1}}}{{{V}_{2}}}=1\).

    ATNETWORK

Mã câu hỏi: 257644

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON