YOMEDIA
NONE
  • Câu hỏi:

    Cho hai số thực a>1,b>1. Biết phương trình \({{a}^{x}}{{b}^{{{x}^{2}}-1}}=1\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\). Tìm giá trị nhỏ nhất của biểu thức \(S={{\left( \frac{{{x}_{1}}{{x}_{2}}}{{{x}_{1}}+{{x}_{2}}} \right)}^{2}}-4\left( {{x}_{1}}+{{x}_{2}} \right)\). 

    • A. \(3\sqrt[3]{4}\)
    • B. 4
    • C. \(3\sqrt[3]{2}\)
    • D. \(\sqrt[3]{4}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có \({{a}^{x}}{{b}^{{{x}^{2}}-1}}=1\Leftrightarrow x{{\log }_{b}}a+\left( {{x}^{2}}-1 \right)=0\Leftrightarrow {{x}^{2}}+x{{\log }_{b}}a-1=0\)

    Do phương trình có hai nghiệm \({{x}_{1}},{{x}_{2}}\) nên theo định lý Viet ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=-{{\log }_{b}}a \\ & {{x}_{1}}{{x}_{2}}=-1 \\ \end{align} \right.\)

    Khi đó \(S=\frac{1}{\log _{b}^{2}a}+4{{\log }_{b}}a\)

    Đặt \(t={{\log }_{b}}a\), do \(a>1,b>1\Rightarrow t>0\). Khi đó \(S=\frac{1}{{{t}^{2}}}+4t=\frac{1}{{{t}^{2}}}+2t+2t\ge 3\sqrt[3]{4}\).

    Đẳng thức xảy ra khi \(\frac{1}{{{t}^{2}}}=2t\Leftrightarrow t=\frac{1}{\sqrt[3]{2}}\). Vậy \(\min S=3\sqrt[3]{4}\)

    ATNETWORK

Mã câu hỏi: 257642

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON