-
Câu hỏi:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và thể tích của khối chóp đó bằng \(\frac{{{a^3}}}{4}.\) Tính độ dài cạnh bên SA.
- A. \(SA = \frac{{a\sqrt 3 }}{2}.\)
- B. \(SA = 2a\sqrt 3 .\)
- C. \(SA = a\sqrt 3 .\)
- D. \(SA = \frac{{a\sqrt 3 }}{3}.\)
Lời giải tham khảo:
Đáp án đúng: C
Đáy là tam giác đều cạnh a nên diện tích \({S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\).
SA là đường cao nên:
\({V_{S.ABC}} = \frac{1}{3}SA.{S_{ABC}}\)
\(\Rightarrow SA = \frac{{3{V_{S.ABC}}}}{{{S_{ABC}}}} = \frac{{\frac{{3{a^3}}}{4}}}{{\frac{{{a^2}\sqrt 3 }}{4}}} = a\sqrt 3\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
- Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA = a\sqrt 3 .\) Tính thể tích V khối chóp S.ABC?
- Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và thể tích của khối chóp đó bằng \(\frac{{{a^3}}}{4}.\) Tính độ dài cạnh bên SA.
- Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABA’C’
- Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật có \(AB = 3a,{\rm{ }}AC = 5a\) và cạnh bên SB vuông góc với mặt phẳng đáy. Biết thể tích khối chóp bằng \(6a^3\). Tính khoảng cách từ đỉnh B đến mặt phẳng (SAD).
- Cho hình trụ có hai đường tròn đáy lần lượt là (O); (O’). Biết thể tích khối nón có đỉnh là O và đáy là hình tròn (O’) là \(a^3\) tính thể tích V của khối trụ đã cho?
- Cho mặt cầu có diện tích bằng \(\frac{{8\pi {a^2}}}{3}.\) Tìm bán kính R của mặt cầu.
- Trong không gian với hệ Oxyz, cho hai điểm A(1;2;3) và B(3;2;1). Viết phương trình mặt phẳng trung trực của đoạn thẳng AB
- Trong không gian với hệ trục tọa độ Oxyz, viết phương trình của mặt cầu đi qua ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và có tâm thuộc mặt phẳng (P):x+y+z−2=0
- Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{3}\) và \(\left( P \right):2x + y - z = 0.\) Viết phương trình mặt phẳng (Q) chứa đường thẳng d và vuông góc mặt phẳng (P).