YOMEDIA
NONE
  • Câu hỏi:

    Cho đoạn thẳng AB có độ dài bằng 2a, vẽ tia Ax về phía điểm B sao cho điểm B luôn cách tia Ax  một đoạn bằng a. Gọi H là hình chiếu của B lên tia Ax, khi tam giác AHB quay quanh trục AB  thì đường gấp khúc AHB vẽ thành mặt tròn xoay có diện tích xung quanh bằng  bao nhiêu?

    • A. \({S_{xq}} = \frac{{\left( {2 + \sqrt 2 } \right)\pi {a^2}}}{2}.\)
    • B. \({S_{xq}} = \frac{{\left( {3 + \sqrt 3 } \right)\pi {a^2}}}{2}.\)
    • C. \({S_{xq}} = \frac{{\left( {1 + \sqrt 3 } \right)\pi {a^2}}}{2}.\)
    • D. \({S_{xq}} = \frac{{3\sqrt 2 \pi {a^2}}}{2}.\)

    Đáp án đúng: B

    Khi quay quanh tam giác AHB thì đường gấp khúc AHB vẽ lên một mặt tròn xoay.

    Diện tích mặt tròn xoay này bằng tổng diện tích xung quanh hai hình nón đường sinh AH và BH.

    Ta có  \(AH=\sqrt{AB^2-BH^2}=a\sqrt{3}\)

    \(HK=\frac{AH.BH}{AB}=\frac{a\sqrt{3}.a}{2a}=\frac{a\sqrt{3}}{2}\)

    Diện tích xung quanh hình nón có đường sinh AH là \(S_1=\pi .\frac{a\sqrt{3}}{2}.a\sqrt{3}=\frac{3a^2\pi }{2}\)  

    Diện tích xung quanh hình nón có đường sinh BH là \(S_2=\pi .\frac{a\sqrt{3}}{2}.a=\frac{\sqrt{3}a^2\pi }{2}\) 

    Diện tích mặt tròn xoay cần tìm là  \(S=S_1+S_2=\frac{(3+\sqrt{3})a^2\pi }{2}\).

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ MẶT NÓN, HÌNH NÓN, KHỐI NÓN

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON