-
Câu hỏi:
Tìm giá trị cực tiểu \(y_{CT}\) của hàm số \(y = - {x^3} + 3{x^2} + 2.\)
- A. \(y_{CT}=2\)
- B. \(y_{CT}=-2\)
- C. \(y_{CT}=-4\)
- D. \(y_{CT}=6\)
Đáp án đúng: A
\(y' = - 3{x^2} + 6;y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\)
Vậy hàm số đạt cực tiểu tại x=0, giá trị cực tiểu \({y_{ct}} = y(0) = 2.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm tất cả các giá trị của tham số m để ba điểm cực trị của đồ thị hàm số y = {x^4} + (6m - 4){x^2} + 1 - m là ba đỉnh của một tam giác vuông
- Tìm m để hàm số y=x^3/3-mx^2+(m^2-1)x+1 đạt cực đại tại x=1
- Tìm khẳng định đúng về cực trị của hàm số y=(x-1)^2/(x-2)
- Tìm số điểm cực đại của hàm số hàm số y=f(x) liên tục trên đoạn [-2;3] và có đồ thị như hình vẽ
- Biết rằng đồ thị hàm số y=(3a^2-1)x^3-(b^3+1)x^2+3c^2x+4d có hai điểm cực trị là (1;-7) và (2;-8). Hãy xác định tổng M=a^2+b^2+c^2+d^2
- Gọi {x_1},{x_2} là hai điểm cực trị của hàm số y=(x^2-4x)/(x+1). Tính giá trị biểu thức P=x_1.x_2
- Tìm tất cả các giá trị thực của m để đồ thị hàm số y=x^4-4(m-1)x^2+2m-1 có ba điểm cực trị tạo thành một tam giác có một góc bằng 120 độ
- Tìm khẳng định đúng về cực trị của hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ bên
- Khẳng định nào sau đây đúng về hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
- Tìm hàm số mà đồ thị có đúng một điểm cực trị y = {x^4} + 2{x^2} - 1