-
Câu hỏi:
Tìm m để hàm số \(y = \frac{{{x^3}}}{3} - m{{\rm{x}}^2} + \left( {{m^2} - 1} \right){\rm{x}} + 1\) đạt cực đại tại x=1.
- A. 1
- B. 0
- C. 2
- D. -2
Đáp án đúng: C
\(y = \frac{{{x^3}}}{3} - m{{\rm{x}}^2} + \left( {{m^2} - 1} \right){\rm{x}} + 1\)
\(y' = {x^2} - 2mx + ({m^2} - 1)\)
\(y'' = 2x - 2m\)
Để hàm số đạt cực trị tại x=1 thì:
\(y'(1) = 0 \Leftrightarrow 1 - 2m + ({m^2} - 1) = 0 \Leftrightarrow {m^2} - 2m = 0 \Leftrightarrow \left[ \begin{array}{l} m = 0\\ m = 0 \end{array} \right.\)
Với m=0 ta có: \(y''(1) = 2 > 0\)
Với m=2 ta có: \(y''(1) = - 2 < 0\)
Thử lại với m=2 hàm số đạt cực tiểu tại x=1.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm khẳng định đúng về cực trị của hàm số y=(x-1)^2/(x-2)
- Tìm số điểm cực đại của hàm số hàm số y=f(x) liên tục trên đoạn [-2;3] và có đồ thị như hình vẽ
- Biết rằng đồ thị hàm số y=(3a^2-1)x^3-(b^3+1)x^2+3c^2x+4d có hai điểm cực trị là (1;-7) và (2;-8). Hãy xác định tổng M=a^2+b^2+c^2+d^2
- Gọi {x_1},{x_2} là hai điểm cực trị của hàm số y=(x^2-4x)/(x+1). Tính giá trị biểu thức P=x_1.x_2
- Tìm tất cả các giá trị thực của m để đồ thị hàm số y=x^4-4(m-1)x^2+2m-1 có ba điểm cực trị tạo thành một tam giác có một góc bằng 120 độ
- Tìm khẳng định đúng về cực trị của hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ bên
- Khẳng định nào sau đây đúng về hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
- Tìm hàm số mà đồ thị có đúng một điểm cực trị y = {x^4} + 2{x^2} - 1
- Tìm khẳng định sai về cực trị của hàm số có bảng biến thiên như hình vẽ
- Đồ thị hàm số y=1/5x^5+5/4x^4+1/3x^3-18x-4 có tất cả bao nhiêu điểm cực trị