Bài 3: Giải hệ phương trình bằng phương pháp thế - Đại số 9

5 trắc nghiệm 8 bài tập SGK

Tìm hiểu một trong những phương pháp rất hiệu quả trong giải hệ phương trình nói chung và hệ phương trình bậc nhất hai ẩn nói riêng đó là phương pháp thế.

Tóm tắt lý thuyết

1. Quy tắc thế

Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế gồm hai bước sau:

Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2: Dùng phương trình mới để thay thế cho một trong hai phương trình của hệ, ta được một hệ phương trình mới tương đương với hệ ban đầu.

2. Dùng quy tắc thế để giải hệ phương trình

Bước 1: Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới tương đương, trong đó có một phương trình một ẩn.

Bước 2: Giải phương trình một ẩn đó, từ đó tìm ẩn còn lại, rồi suy ra nghiệm của hệ đã cho.



 


 

 

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Giải hệ phương trình sau bằng phương pháp thế  \(\left\{\begin{matrix} x-2y=1\\ x+y=1 \end{matrix}\right.\)

Hướng dẫn: Ta có \(\left\{\begin{matrix} x-2y=1\\ x+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ x+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ 2y+1+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ 3y=0 \end{matrix}\right.\)  \(<=>\left\{\begin{matrix} x=1\\ y=0 \end{matrix}\right.\)

Bài 2: Giải hệ phương trình sau bằng phương phép thế \(\left\{\begin{matrix} -x+2y=1\\ 2x-4y=-2 \end{matrix}\right.\)

Hướng dẫn: Ta có \(\left\{\begin{matrix} -x+2y=1\\ 2x-4y=-2 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ 2x-4y=-2 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ 2(2y-1)-4y=-2 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=2y-1\\ 0y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ y \in \mathbb{R} \end{matrix}\right.\)

Bài 3: Chứng minh hệ phương trình sau vô nghiệm \(\left\{\begin{matrix} x-3y=2\\ -3x+9y=0 \end{matrix}\right.\)

Hướng dẫn: Ta có \(\left\{\begin{matrix} x-3y=2\\ -3x+9y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=3y+2\\ -3x+9y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=3y+2\\ -3(3y+2)+9y=0 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=3y+2\\ 0x=6 \end{matrix}\right.\).

Do phương trình \(0x=6\) vô nghiệm nên hệ đã cho vô nghiệm

2. Bài tập nâng cao

Bài 1: Cho hệ phương trình với tham số a: \(\left\{\begin{matrix} (a+1)x-y=a+1\\ x+(a-1)y=2 \end{matrix}\right.\). Giải và biện luận hệ này.

Hướng dẫn: Ta có \(\left\{\begin{matrix} (a+1)x-y=a+1\\ x+(a-1)y=2 \end{matrix}\right.<=>\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x+(a-1)y=2 \end{matrix}\right.<=>\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x+(a-1)[(a+1)x-(a+1)]=2 \end{matrix}\right.\) \(<=> \left\{\begin{matrix} y=(a+1)x-(a+1)\\ a^2x=a^2+1 \end{matrix}\right.\)

Nếu \(a \neq 0\) thì hệ tương đương \(\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x=\frac{a^2+1}{a^2} \end{matrix}\right. <=>\left\{\begin{matrix} y=\frac{a+1}{a^2}\\ x=\frac{a^2+1}{a^2} \end{matrix}\right.\)

Nếu \(a=0\) thì hệ tương đương \(\left\{\begin{matrix} y=x-1\\ 0x=1 \end{matrix}\right.\). Do phương trình \(0x=1\) vô nghiêm nên hệ vô nghiệm.

Bài 2: Biết rằng đa thức \(P(x)\) chia hết cho \(x-a\) khi và chỉ khi \(P(a)=0\) (định lý Bezout). Tìm các giá trị a, b sao cho đa thức sau đồng thời chia hết cho \(x-1\) và \(x-2\):

\(P(x)=ax^4+(a-1)x^3+bx^2+3x+1\)

Hướng dẫn: Từ giả thiết ta có \(\left\{\begin{matrix} P(1)=0\\ P(2)=0 \end{matrix}\right.<=>\left\{\begin{matrix} 2a+b=3\\ 24a+4b=1 \end{matrix}\right.\). Giải hệ này bằng phương pháp thế ta được \(\left\{\begin{matrix} a=\frac{13}{16}\\ b=\frac{-37}{8} \end{matrix}\right.\)

 

-- Mod Toán Học 9 HỌC247