RANDOM
VIDEO

Bài tập 40 trang 83 SGK Toán 9 Tập 2

Giải bài 40 tr 83 sách GK Toán 9 Tập 2

Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyến SA và cát tuyến SBC của đường tròn. Tia phân giác của góc BAC cắt dây BC tại D. Chứng minh SA = SD.

RANDOM

Hướng dẫn giải chi tiết bài 40

 
 

Với bài tập 40 này, chúng ta sẽ sử dụng tính chất góc có đỉnh nằm trong đường tròn để giải bài toán, kết hợp góc tạo bởi tiếp tuyến và dây cung.

Gọi giao điểm của AD với đường tròn là E.

Vì AE là tia phân giác của góc BAC

\(\Rightarrow \widehat{BAE}=\widehat{CAE}=\frac{1}{2}\widehat{BAC}\)

\(\Rightarrow sd\widehat{BE}=sd\widehat{EC}\)

Ta có góc ADS là góc có đỉnh bên trong đường tròn

\(\Rightarrow \widehat{ADS}=\frac{sd\widehat{AB}+sd\widehat{BE}}{2}\)

\(=\frac{sd\widehat{AB}+sd\widehat{CE}}{2}=\frac{1}{2}sd\widehat{AE}\)

Mặc khác, góc SAD là góc tạo bởi tiếp tuyến SA và dây cung AE

\(\Rightarrow \widehat{SAD}=\frac{1}{2}sd\widehat{AE}\)

Từ các điều trên:

\(\Rightarrow \widehat{SAD}=\widehat{SDA}\)

Vậy tam giác SDA cân tại S

\(\Rightarrow SA=SD\)

-- Mod Toán 9 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 40 trang 83 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
  • Bo bo

    Cho đường tròn tâm O , đường kính AB = 2R . Điểm C nằm giữa hai điểm A và B , vẽ đường tròn tâm I đường kính CA và đường tròn tâm K đường kính CB . Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại D và E đoạn thẳng DA cắt đường tròn tâm I

    tại M vs DB cắt đường tròn tâm K tại N

    a) CMR 4 điểm C,M,Đ,N cùng thuộc 1 đường tròn

    b) CMR MN là tiếp tuyến của đường tròn tâm I và K

    c) xác định vj trí điểm C trên đường kính AB sao cho tứ giác CMDN có S lớn nhất

    Theo dõi (0) 1 Trả lời
  •  
     
    Anh Nguyễn

    Bài 5.2 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 105)

    Cho đường tròn tâm O bán kính R. Lấy ba điểm A, B, C trên đường tròn đó sao cho \(AB=BC=CA\). Gọi I là điểm bất kì thuộc cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI với AB. Gọi N là giao điểm của BI với AC. Chứng minh :

     

    a) \(\widehat{ANB}=\widehat{BCI}\)

     

    b) \(\widehat{AMC}=\widehat{CBI}\)

     

    Theo dõi (0) 1 Trả lời

 

YOMEDIA
1=>1