YOMEDIA
NONE

Bài tập 36 trang 84 SBT Toán 8 Tập 1

Giải bài 36 tr 84 sách BT Toán lớp 8 Tập 1

Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC.

Chứng minh rằng:

a. EI// CD, IF // AB

b. \(EF \le {{AB + CD} \over 2}\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

\(a)\) Sử dụng định nghĩa, tính chất đường trung bình của tam giác: 

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

\(b)\)  Sử dụng bất đẳng thức tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Và \(EI = {{CD} \over 2}\)

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

Và \(IF = {{AB} \over 2}\)

b) Trong ∆ EIF ta có: EF ≤ EI + IF (dấu “=” xảy ra khi E, I, F thẳng hàng)

Mà \(EI = {{CD} \over 2}{\rm{;}}\,\,IF{\rm{ = }}{{AB} \over 2}\) (chứng minh trên) \( \Rightarrow {\rm{EF}} \le {{CD} \over 2} + {{AB} \over 2}\) 

Vậy \(EF \le {{AB + CD} \over 2}\) (dấu bằng xảy ra khi AB // CD)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 36 trang 84 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON