YOMEDIA
NONE

Bài tập 41 trang 84 SBT Toán 8 Tập 1

Giải bài 41 tr 84 sách BT Toán lớp 8 Tập 1

Chứng minh rằng đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm của hai đường chéo và đi qua trung điểm của cạnh bên thứ hai.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

+) Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.

+) Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

Lời giải chi tiết

Xét hình thang \(ABCD\) có: \(AB // CD.\)

\(E\) là trung điểm của \(AD,\) đường thẳng đi qua \(E\) song song với \(AB\) cắt \(BC\) tại \(F,\) \(AC\) tại \(K,\) \(BD \) tại \(I.\)

Vì \(E\) là trung điểm của \(AD\)

\(EF // AB\)

Suy ra: \(BF = FC\) (tính chất đường trung bình hình thang)

+) Ta có \(EK//AB\) và \(AB//CD\) nên \(EK//DC\)

Trong tam giác \(ADC\) ta có:

\(E\) là trung điểm của \(AD\)

\(EK // DC\)

Suy ra: \(AK = KC\) (tính chất đường trung bình tam giác)

Trong tam giác \(ABD\) ta có:

\(E\) là trung điểm cạnh \(AD\)
\(EI // AB\)

Suy ra: \(BI = ID\) (tính chất đường trung bình của tam giác)

Vậy đường thẳng đi qua trung điểm \(E\) của cạnh bên \(AD\) của hình thang \(ABCD\) thì đi qua trung điểm cạnh bên \(BC\) và trung điểm hai đường chéo \(AC, BD.\

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 41 trang 84 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON