YOMEDIA
NONE

Bài tập 35 trang 84 SBT Toán 8 Tập 1

Giải bài 35 tr 84 sách BT Toán lớp 8 Tập 1

Hình thang \(ABCD\) có đáy \(AB,\) \(CD.\) Gọi \(E, F, I\) theo thứ tự là trung điểm của \(AD,\) \(BC,\) \(AC.\) Chứng minh rằng ba điểm \(E, I, F\) thẳng hàng.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng định nghĩa, tính chất đường trung bình của tam giác:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Sử dụng tiên đề Ơ-clit: Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.

Lời giải chi tiết

Hình thang \(ABCD\) có \(AB// CD\)

\(E\) là trung điểm của \(AD \;\;(gt)\)

\(F\) là trung điểm của \(BC\;\; (gt)\)

Nên \(EF\) là đường trung bình của hình thang \(ABCD\)

\(⇒ EF // CD\) (tính chất đường trung bình hình thang)  \((1)\)

Trong \(∆ ADC\) có:

\(E\) là trung điểm của \(AD \;\;(gt)\)

\(I\) là trung điểm của \(AC\;\;  (gt)\)

Nên \(EI\) là đường trung bình của \(∆ ADC\)

\(⇒ EI // CD\) (tính chất đường trung bình tam giác) \((2)\)

Từ \((1)\) và \((2)\) theo tiên đề Ơclít ta có đường thẳng \(EF\) và \(EI\) trùng nhau

Vậy \(E, I, F\) thẳng hàng.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 35 trang 84 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON