YOMEDIA
NONE

Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1

Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

Tính \(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }}f\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to 2^-} \:f\left(x \right).\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 5.13

Phương pháp giải

HS xem lại kiến thức về giới hạn bên trái và giới hạn bên phải.

 

Lời giải chi tiết

Ta có: \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{2}{{x - 1}} \cdot \frac{1}{{x - 2}}\)

+) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} =  + \infty \) (do x – 2 > 0 khi x > 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} =  + \infty \).

 

+) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{x - 2}} =  - \infty \) (do x – 2 < 0 khi x < 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} =  - \infty \).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON