Bài tập 5.20 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức
Một đơn vị sản xuất hàng thủ công ước tính chi phí để sản xuất x đơn vị sản phẩm là \(C\left( x \right) = 2x + 55\) (triệu đồng).
a) Tìm hàm số f(x) biểu thị chi phí trung bình để sản xuất mỗi đơn vị sản phẩm.
b) Tính \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\). Giới hạn này có ý nghĩa gì?
Hướng dẫn giải chi tiết Bài 5.20
a) Ta có: \(f\left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{2x + 55}}{x}\).
b) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{{55}}{x}}}{1} = 2\).
Khi số lượng sản phẩm sản xuất được càng lớn thì chi phí trung bình để sản xuất một đơn vị sản phẩm càng gần với 2 (triệu đồng).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.