YOMEDIA
NONE

Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức

Tìm a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + ax\;\;khi\;x > 3\\3{x^2} + 1\;\;\;khi\;x \le 3\end{array} \right.\) có giới hạn khi \(x \to 3\)?

ATNETWORK

Hướng dẫn giải chi tiết Bài 5.13

Ta có: \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {{x^2} + ax} \right) = 9 + 3a\), \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( {3{x^2} + 1} \right) = 28\)

Do đó, hàm số f(x) có giới hạn khi \(x \to 3\) khi \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)\)

Suy ra \(9 + 3a = 28 \Leftrightarrow a = \frac{{19}}{3}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON